Ranolazine for congenital and acquired late INa-linked arrhythmias: in silico pharmacological screening.
نویسندگان
چکیده
RATIONALE The antianginal ranolazine blocks the human ether-a-go-go-related gene-based current IKr at therapeutic concentrations and causes QT interval prolongation. Thus, ranolazine is contraindicated for patients with preexisting long-QT and those with repolarization abnormalities. However, with its preferential targeting of late INa (INaL), patients with disease resulting from increased INaL from inherited defects (eg, long-QT syndrome type 3 or disease-induced electric remodeling (eg, ischemic heart failure) might be exactly the ones to benefit most from the presumed antiarrhythmic properties of ranolazine. OBJECTIVE We developed a computational model to predict if therapeutic effects of pharmacological targeting of INaL by ranolazine prevailed over the off-target block of IKr in the setting of inherited long-QT syndrome type 3 and heart failure. METHODS AND RESULTS We developed computational models describing the kinetics and the interaction of ranolazine with cardiac Na(+) channels in the setting of normal physiology, long-QT syndrome type 3-linked ΔKPQ mutation, and heart failure. We then simulated clinically relevant concentrations of ranolazine and predicted the combined effects of Na(+) channel and IKr blockade by both the parent compound ranolazine and its active metabolites, which have shown potent blocking effects in the therapeutically relevant range. Our simulations suggest that ranolazine is effective at normalizing arrhythmia triggers in bradycardia-dependent arrhythmias in long-QT syndrome type 3 as well tachyarrhythmogenic triggers arising from heart failure-induced remodeling. CONCLUSIONS Our model predictions suggest that acute targeting of INaL with ranolazine may be an effective therapeutic strategy in diverse arrhythmia-provoking situations that arise from a common pathway of increased pathological INaL.
منابع مشابه
An emerging antiarrhythmic target: late sodium current.
The cardiac late sodium current (INa,L) has been in the focus of research in the recent decade. The first reports on the sustained component of voltage activated sodium current date back to the seventies, but early studies interpreted this tiny current as a product of a few channels that fail to inactivate, having neither physiologic nor pathologic implications. Recently, the cardiac INa,L has ...
متن کاملLate sodium current inhibition alone with ranolazine is sufficient to reduce ischemia- and cardiac glycoside-induced calcium overload and contractile dysfunction mediated by reverse-mode sodium/calcium exchange.
Excessive reverse-mode (RM) sodium/calcium exchanger 1.1 (NCX1.1) activity, resulting from intracellular sodium accumulation caused by reduced Na+/K+-ATPase activity, increased Na-H exchanger 1 activity. The induction of the voltage-gated sodium channel late current component (late INa), is a major pathway for intracellular calcium (Ca2+i) loading in cardiac ischemia-reperfusion (IR) injury and...
متن کاملBlocking late sodium current reduces hydrogen peroxide-induced arrhythmogenic activity and contractile dysfunction.
Reactive oxygen species (ROS), including H2O2, cause intracellular calcium overload and ischemia-reperfusion damage. The objective of this study was to examine the hypothesis that H2O2-induced arrhythmic activity and contractile dysfunction are the results of an effect of H2O2 to increase the magnitude of the late sodium current (late INa). Guinea pig and rabbit isolated ventricular myocytes we...
متن کاملHyperthermia Influences the Effects of Sodium Channel Blocking Drugs in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes
INTRODUCTION Fever can increase the susceptibility to supraventricular and ventricular arrhythmias, in which sodium channel dysfunction has been implicated. Whether fever influences the efficacy of sodium channel blocking drugs is unknown. The current study was designed to investigate the temperature dependent effects of distinct sodium channel blocking drugs on the sodium currents in human ind...
متن کاملReview : Frontiers in Pharmacology
The sodium current in the heart is not a single current with a mono-exponential decay but rather a mixture of currents with different kinetics. It is not clear whether these arise from distinct populations of channels, or from modulation of a single population. A very slowly inactivating component, [INa(P)] INa(P) is usually about 1% of the size of the peak transient current [INa(T)], but is en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 113 7 شماره
صفحات -
تاریخ انتشار 2013